To, co nyní zjišťujeme o vesmíru pomocí nejmodernějších přístrojů, znali sumerští kněží už 3,5 tisíce let př.n.l. Co je tedy v sumerských eposech napsáno?
Na počátku bylo Slunce, u něj byly dvě planety - Mumu (dnes Merkur) a Tiámat.Pak se vytvořily další planety nazývané Lahamu (Venuše) a Lahmu (Mars), dále Kishar (Jupiter) a Anshar (Saturn) - ten měl satelit Gaga. K nim se po nějaké době připojily Anu (Uran) a Ea (Neptun). Jejich dráhy nebyly příliš stabilní, což měla na svědomí „planeta chaosu“ Tiámat.Z hlubin vesmíru se ke vznikající Sluneční soustavě přiblížila "bludná planeta" – Nibiru/Marduk (názvy sumerský a babylonský). Nelze ovšem zatím ověřit v sumerských záznamech zda to bylo před 4 až 5 miliardami let, jak to uvádějí dnešní vědecké kapacity nebo daleko později, kdy už bychom se pohybovali maximálně v milionech, ne-li pouze ve stovkách tisíců let.Planeta se do Sluneční soustavy, která se otáčela proti směru hodinových ručiček, řítila po směru hodinových ručiček, tedy proti pohybu planet na oběžné dráze kolem slunce. Průlet kolem Uranu dokonce způsobil, že z této planety byla vytržena hmota a z ní se vytvořily 4 satelity planety Nibiru/Marduk. Takovýto hrubý zásah do integrity planety způsobil i její náklon o 90° a tím i zcela netypický (valivý) způsob oběhu kolem Slunce.Její dráha se dále zakřivila do středu sluneční soustavy - k planetě Tiámat. Satelit Gaga byl odtržen od Saturnu a stal se planetou - Pluto (je to jediná planeta s jinou rovinou oběžné dráhy než mají planety zbývající). Gravitační síly způsobily, že se z vodní planety Tiámat odtrhly kusy hmoty a vytvořily 11 satelitů planety Tiámat. Největší z nich byl Kingu, který se od Tiámat odpoutal a byl na téměř planetární dráze. To ale se již blížil Nibiru/Marduk. Jeho satelity narazily do Tiámat, kterou silně poškodily a jejich 10 satelitů roztříštily a odrazily na extrémní oběžné dráhy - vznikly komety. A opět si můžeme položit otázku: náhoda nebo záměr? Vždyť i my dnes pro urychlování vypouštěných kosmických sond používáme gravitační sílu Slunce a planet v sluneční soustavě.A Nibiru/Marduk? Ten se průletem stal planetou sluneční soustavy, ale s extrémně eliptickou dráhou. Jeden jeho oběh trvá údajně
3 600 let. Při svém dalším obletu se opět přiblížil k poškozené Tiámat a způsobil, že se Tiámat rozlomila! Velký kus se sbalil do nové planety (včetně vodní hmoty), která zachytila satelit Kingu a vytvořila z něj vlastní oběžnici - vznikla Země a Měsíc. Protože část vodních par se udržela ve vysokých vrstvách atmosféry a působila tak na planetě skleníkový efekt, mohl se později život na Zemi rychle rozvíjet a to i v gigantických formách. Zbytek Tiámat se rozpadl na tisíce kousků, které se začaly pohybovat kolem Slunce - to jsou dnešní Asteroidy mezi Marsem a Jupiterem. Potom už zbývala jen „maličkost“ – přemístit Zemi na novou oběžnou dráhu blíže ke Slunci. Dnes je známý fakt, že dráha řady asteroidů, které se čas od času nebezpečně přiblíží k Zemi, začíná právě v pásmu Asteroidů. Přemístila se Země na své současné místo po podobné dráze?
Tento kosmogonický výklad je obsažen na klínopisných babylonských tabulkách a při dobré vůli najdeme některé náznaky a citace i ve Starém Zákoně. Planeta Nibiru/Marduk, také je nazývána Planetou křížení a označována symbolem kříže. Proto je symbol kříže znám už dlouho před nástupem křesťanství.
Dnešní rozvoj astronomie se zdá tuto teorii podporovat - složení asteroidů odpovídá složení Země, jejich nepravidelné tvary hovoří pro katastrofický vznik. Vlastnosti Neptunu a Uranu rovněž odpovídají jejich charakteristice v sumerských legendách – vodní (z kapalných plynů tvořené) planety!
Jak ovšem mohli Sumerové tuto kosmogonickou teorii znát? Náznak nám dává jejich číslování planet. Země je označována číslem 7, Mars
Předpokladem je, že na planetě Nibiru/Marduk vznikl život a měl náskok proti vzniku života na Zemi. Inteligentní bytosti zde byly o miliony let dříve než na Zemi. Problém prapodivných životních podmínek na planetě, která je po většinu svého obletu Slunce mimo námi uznávaný životodárný pás relativně malé vzdálenosti od Slunce, může být vysvětlován existencí optimálního vnitřního tepla planety
Vezmeme-li v úvahu velikost této planety, jejíž průměr je uváděn přibližně 1/3 až 1/2 našeho Měsíce, můžeme uvažovat i o tom, že by se mohlo jednat o umělé těleso. Proč by nemohla vyspělá civilizace postavit obří kosmickou loď opticky zvětšenou přiměřeně velkými „plachtami“ sloužícími pro pohon „slunečním větrem“, která by byla schopna pohybovat se vesmírem po předem vypočtené dráze? Nebo snad je jednodušší pohybovat malou planetou? Zajímavé je také tvrzení, že planeta Marduk si vytvořila 4 satelity, kterými pak „zaútočila“ na Tiámat. Jestliže „bohové“ cestovali vesmírem a měli tak mocné zbraně, které mohly roztrhat planetu působili ve Sluneční soustavě s největší pravděpodobností cílevědomě.
Z tohoto zorného úhlu bychom se potom mohli dívat na všechny následující katastrofy, o kterých dosud věda tvrdí, že jsou to náhodné přírodní jevy (pád meteoritů). Jestliže ze všech písemných památek vyplývá, že potopa byla způsobena záměrně, můžeme předpokládat, že vše, od začátku do konce byl (nebo je ?) záměr.
Že byl svět stvořen za 7 dní vypadá mírně řečeno nevěrohodně. Běžný čtenář bible automaticky předpokládá, že se jedná o 7 dní pozemských. Pokud si ale představíme, že výraz „den“ znamená pouze pravidelně se opakující cyklus, zbývá potom už jen určit, jaká oběžná doba byla použita pro tuto jednotku. Židovské pověsti z pravěku uvádějí, že jeden den boží trvá 1 000 dní pozemských. Ve vesmíru by ale pravděpodobně bylo možno nalézt i jiná časová měřítka. Obdobně je nutno použít jiná než pozemská měřítka i pro posuzování inteligence, délky života a možnosti např. vytváření gigantických silových polí nebo jiných forem energie. Když Jules Verne psal o dělostřeleckém náboji, schopném zničit celé město, až do okamžiku zničení Hirošimy to každý považoval za čirou fantazii.
Takzvané náhody
(Pro vědecky zaměřené čtenáře)
V knize autorů Haralda Lesche a Jorna Mullera „Velký třesk - druhé dějství“ jsou uvedeny skutečnosti, kterým vděčíme za vznik života ve vesmíru a na Zemi.
1. Asymetrie při vzniku vesmíru.
Když kvůli pokračujícímu rozpínání vesmíru poklesla teplota asi na 10-27 stupňů Kelvina, nestačila energie v kosmu tvořit supertěžké částice a bosony X se rozpadala na kvarky. Co se stalo vzápětí, patří k největším tajemstvím universa. Teoreticky měl následovat zcela symetrický rozpad bosonů X a antibosonů X na zcela stejné množství kvarků a antikvarků a každá částice se měla jako obvykle anihilovat spolu se svou antičásticí a vyzářit se. Místo toho nastala nepatrná nerovnováha: asi na 10 mld kvarků vzniklo vždy o jeden antikvark méně. Kvarků tedy bylo víc než antikvarků v poměru asi 1:10 mld.
Když teplota kosmu klesla na 10 000 mld stupňů K, nemohly ani kvarky, ani antikvarky existovat jako samostatné částice. Z kvarků se proto vytvořily protony a neutrony a z antikvarků se stávaly antiprotony a antineutrony. Protože ale bylo více kvarků než antikvarků, bylo na 10 mld normálních protonů, popř. neutronů vždy o jeden antiproton, popř. antineutron méně. Původní asymetrie mezi kvarky a antikvarky tedy pokračovala v asymetrii mezi mezi protony a antiprotony, jakož i mezi neutrony a antineutrony. A právě nyní nadešel rozhodující okamžik: když teplota poklesla asi na 1000 mld st. K, anihilovaly protony párově s antiprotony a neutrony s antineutrony a vznikly fotony. Zůstalo jen několik málo protonů a neutronů, na které nezbyly příslušné antičástice. To znamená, že veškerá hmota v podobě hvězd, galaxií, mezigalaktických plynných oblaků a všeho ostatního, co ještě v současném vesmíru existuje, vznikla z těchto několika málo protonů a neutronů, jež unikly zkáze, protože proti sobě neměly žádnou antičástici. Za svou existenci vděčíme jen a jen této závratně malé asymetrii při rozpadu bosonů v ranném vesmíru.
2. Rovnováha kyslíku a dusíku
Zatímco vazebné řetězce a prstence uhlíku tvoří páteř organického světa, za jeho sílu a stabilitu odpovídají kyslík a dusík. Protože dusík poměrně obtížně vstupuje do chemických reakcí, soustředilo se ho v atmosféře největší množství ze všech plynů (78%), zatímco kyslíku jen necelých 21%. Příliš vysoký podíl kyslíku v atmosféře by vyvolal velkoplošné požáry globálních rozměrů. To by zničilo biomasu produkující kyslík, čímž by se snížil podíl kyslíku v atmosféře a požáry by opět uhasly. Žádoucí ovšem není pro život ani příliš málo kyslíku, o čemž by mohli vyprávět himalájští horolezci. Současný podíl kyslíku v zemské atmosféře je výsledkem funkce samočinně se regulujícího, úzce propojeného biosystému. (str.104)
3. Stavba aminokyseliny
Jako základní stavební kameny života mají zvláštní význam aminokyseliny. Tvoří skupinu molekul s podobnou strukturou, které se skládají asi z deseti až třiceti atomů, spojených do uhlíkových řetězců. Objev uhlíkatých molekul ve vesmíru dokládá, že zákony chemické vazby, které jsou koneckonců založeny na fyzikálních zákonech stavby atomu, platí v celém vesmíru.
Jenže aminokyseliny jsou monomery, tedy malé molekuly a od těch je ještě dlouhá cesta k nejjednodušším organismům, jejichž molekuly mají víc než 10 000 atomů. Vznikají procesem, zvaným polymerace. Tento proces, při němž se z jednoduchých molekul budují větší, ba dokonce obří molekuly, odlišuje živou hmotu od neživé. Struktura monomerů vykazuje jednu zvláštnost. Existují dvě formy, z nichž jedna je zrcadlovým obrazem druhé. Byly označeny jako levá a pravá forma. Zvláštní je, že všechny aminokyselinové monomery mají levou orientaci.Protože nikdo neví proč, bylo to zatím označeno za náhodu. Omezení na jednu ze dvou možností však značně zvyšuje účinnost chemických reakcí, které umožňují a udržují život. Ve zbytcích meteoritů však nacházíme aminokyseliny obou typů. Znamená to tedy, že podmínky pro život na Zemi byly modifikovány. Tento závěr potvrzuje i výpočet pravděpodobnosti s jakou by reagovalo 1000 aminokyselin ve vhodné nádobě za miliardu let tak, aby vytvořily určitou bílkovinu. Matematikové došli k číslu 10 -360 . Zmíněná pravděpodobnost se prakticky rovná nule. Ve srovnání s tím ale existuje přímo obrovská pravděpodobnost, přesněji 10 -24 , že ze saharského písku na jedno hrábnutí vybereme docela určité zrnko.
4. Voda
Malé molekuly z jednoho atomu kyslíku a dvou atomů vodíku určují biologický svět. Většina chemických procesů v buňkách probíhá ve vodě a s její pomocí. Kyslík i vodík jsou při pokojové teplotě plyny, ale po jejich spojení vznikne látka tekutá. Na základě trojúhelníkové stavby jsou uvnitř molekuly vody těžiště rozdělena kladným a záporným nábojem, takže molekula působí jako dipól, ačkoliv jako celek je neutrální. Vznikají vodíkové můstky, které mimo jiné způsobují zvláštní vlastnosti ledu, jako třetího skupenství vody. Led je lehčí než voda, zamrzá na povrchu vodní plochy, izoluje spodní vrstvy a dovoluje tak živým organismům přežívat v nepříznivých podmínkách. Kdyby tomu bylo jinak, nemohl by život ve vodě existovat.
5. Kde se vzala RNA?
V biologickém smyslu chápeme pod rozmnožováním předávání informace k zachování formy a funkce nějakého biologického organismu. Model prapolévky ze které vznikl život je zatím používán, i když není průkazný. A i kdyby tento model platil , nikdo není schopen vysvětlit, jak tyto vytvořené složité molekuly obživly. Jak obživly tyto uhlíkové řetězce a jak se začaly reprodukovat? Jak vznikaly duplikáty? Ačkoliv známe přesně strukturu DNA, dodnes se nikomu nepodařilo ji přimět, aby vznikla sama od sebe. Aby se mohly spustit polymerační procesy, sloužící k výstavbě složitých bílkovinných makromolekul, je zapotřebí určitých proteinů, které jako enzymy katalyzačně podporují reakce v nichž se duplikuje informace uložená v DNA. Jenže co bylo dřív – originál, DNA, nebo proteiny fungující jako enzymy? Klíč k životu se možná skrývá v kyselině ribonukleové (RNA), podobné DNA. Tato kyselina totiž obsahuje určité sekvence s katalyzačními vlastnostmi, jež snad umožnily autoreprodukci. Tímto způsobem by vznikl nejprve tzv. svět RNA, v němž by tato molekula obsahovala jak informace, které jsou dnes zakódovány v DNA, tak katalyzační vlastnosti enzymatických proteinů. Nicméně i pak zůstává nezodpovězená otázka: Kde se vzala RNA? Vznikla snad náhodou?
6. Náhody v parametrech Země
Z navrstvení hornin se zjistilo, že před 500 miliony let měl rok víc než 400 dní, že tedy den byl dlouhý jen přibližně 21 hodin. Kdyby nebyl měsíc, působilo by na rotaci Země pouze Slunce, které by dodnes zbrzdilo Zemi asi na desetihodinovou otáčku.
Rychlost rotace určuje do značné míry průběh počasí. Točí-li se planeta příliš pomalu vzniknou mezi osvětlenou a neosvětlenou polokoulí vysoké tepelné rozdíly, způsobující prudké bouře. Točí-li se planeta příliš rychle, snižuje se vlivem odstředivé síly působení gravitace, což má vliv na hustotu atmosféry a její vhodnosti pro život. Snižuje se i působení gravitace, což umožňuje vznik gigantismu u rostlin i živočichů.
Měsíc nejen způsobil, že se Země otáčí vhodnou rychlostí, ale také stabilizuje její osu, která je už miliony let nakloněná vůči kolmici k rovině zemské dráhy kolem Slunce stále pod úhlem 23,5°. Tento sklon má za následek střídání ročních období. Kromě toho s téměř kruhovou dráhou kolem Slunce zaručuje relativně rovnoměrný přítok energie s poměrně mírnými teplotními rozdíly mezi létem a zimou. Kdyby Země neměla Měsíc, sklon zmíněné osy by kolísal během pouhých 1000 let mezi 15° a asi 32°, což by mělo zdrcující účinky na klima. Velmi rychle by se pravděpodobně střídaly doby ledové a doby se subtropickým klimatem.
7. Magnetické pole Země
Další zvláštností Země je její magnetické pole. Působí jako ochranný štít proti kosmickému záření, složenému z vysoce energetických protonů, elektronů a atomových jader, které k nám proniká z vesmíru. Magnetické pole Země souvisí se silami působícími v nitru Země. Vrchní zemské jádro sestává z horkého tekutého železa a niklu. Tato žhavá hmota stoupá vzhůru, ochlazuje se a klesá znovu dolů. Je to permanentní koloběh, který produkuje elektrický proud, vytvářející elektromagnetické pole.
8. Štít proti kometám
Jako ochrana proti kometám může působit velká a těžká planeta (v našem případě Jupiter), která svým silným gravitačním polem zachycuje komety, vlétající do sluneční soustavy. V dějinách Země nastalo posledních
9. Správné místo v Mléčné dráze
Slunce rotuje kolem středu Mléčné dráhy rychlostí 220km/s ve vzdálenosti 26 000 světelných let, tedy poměrně přesně v habituální (obyvatelné) zóně galaxie. Protože spirálová ramena v místě Slunce rotují asi jen poloviční rychlostí, trvá přibližně
10. Blízká slunce a jejich planety
Na seznamu lovce planet Jeana Schneidera z Pařížské observatoře stálo v roce 2003 91 hvězd se 105 planetami. Téměř všechny hvězdy mají hmotnost 0,7 až 1,4 Slunce. Přestože vědci očekávali, že z technických důvodů nemohou objevit tak malé planety jako je Země, překvapilo je, že objevili opravdové obry o hmotnosti třináctkrát větší než Jupiter, největší planeta naší sluneční soustavy. Druhým překvapením bylo, že vzdálenost planet od jejich sluncí byla směšně malá. Země obíhá Slunce ve vzdálenosti přibližně
11. Důležité hodnoty veličin
Vývoj našeho vesmíru je řetězcem po sobě jdoucích a do sebe zasahujících procesů, které mohou proběhnout jen proto, že částice a síly působící mezi nimi mají přesně ty vlastnosti, které mají mít, jinak řečeno, mají potřebné vlastnosti. Vypadá to, jako by počáteční veličiny universa byly nastaveny přesně tak, aby se vývoj mohl ubírat pouze jedním směrem, na jehož dosavadním konci v našich podmínkách stojí člověk. Einstein prý jednou řekl: „Zajímalo by mne, zda Bůh měl na vybranou, když tvořil svět.“
Podívejme se nejprve na to, „co drží pohromadě svět v jeho nejhlubším nitru“. To, že se něco děje a především jak se to děje, je výrazem působení přírodních zákonů v našem světě. Dění v celém vesmíru je určováno působením soustavy všeobecně platných pravidel, která platí všude stejně, tedy alespoň v té části vesmíru, dostupné našemu pozorování. Například spektrum atomu vybuzeného k záření se nemění, ať se jedná o atom v pozemní laboratoři nebo na vzdálené hvězdě. Zdá se, že všude ve vesmíru platí teorie relativity, což lze doložit mj. na základě efektu gravitační čočky, zapříčiněného hmotností. Odhlédneme-li od stále ještě záhadné „temné hmoty“, je vše ve vesmíru složeno z protonů, neutronů, elektronů a neutrin. Působením čtyř základních sil – gravitace, elektromagnetické, silné a slabé interakce – jsou spolu tyto částice v úzkém vzájemném vztahu, přičemž síly jejich působení jsou charakterizovány vzdáleností, na kterou jsou schopny působit. Víme, kolik váží neutron nebo jaký náboj má elektron. Neumíme však vysvětlit, proč hmotnosti částic a vazebné konstanty mají právě tyto a ne jiné hodnoty. Není znám žádný naléhavý důvod, proč byly z nesmírného množství hodnot, které jsou v rámci přírodních zákonů možné, vybrány právě tyto. Jak se ale zdá, právě tyto hodnoty udělaly z našeho kosmu to, čím dnes je. Ať už je vybral kdokoli, nebo cokoli, jim vděčíme za svou existenci. Kdyby například byl neutron jen o 10% těžší, vytvořily by se po velkém třesku téměř samé protony, tedy vodíková jádra. Kdyby byl naproti tomu neutron stejně těžký jako proton, vzniklo by stejné množství neutronů i protonů a na konci primordiální syntézy by zůstalo pouze helium. Kromě jiných důsledků tohoto stavu by také nevznikla žádná voda, neboť bez protonů se nemohou tvořit molekuly vody a bez vody zase není možný život. Kdyby býval poměr hmotnosti protonu a neutronu přesně opačný, odehrálo by se všechno přesně s opačným znaménkem. Tím docházíme k závěru, že již nepatrně změněná hmotnost stavebních kamenů jádra atomu vylučuje vznik života. K obdobnému závěru dojdeme i v případě, kdy bychom přestavěli stupnice čtyř základních sil. Kdyby například byl poměr silné interakce k elektromagnetické síle jen nepatrně jiný, byla by zcela potlačena rezonance berylia a uhlíku a tvorba uhlíku ve hvězdách by se prakticky rovnala nule, takže by nikdy nemohl vzniknout uhlík, na němž je založen život.
12. Antropický princip / ID
Proč je ale příroda taková jaká je, proč přírodní konstanty a síly řídící vývojové procesy mají přesně ty hodnoty a velikosti, a ne jiné, to je jedna z největších záhad fyziky. Proto byl definován antropický princip, který říká:“ Právě proto, že v našem vesmíru existuje život, mohou mít parametry jen ty hodnoty, které umožňují jeho existenci“.
Zajdeme-li ještě o krok dál a uvážíme-li, že základem vzniku vesmíru je záměr docílit určitého výsledku, pak můžeme antropický princip vyjádřit ještě vyhroceněji a dojdeme k závěru, že parametry musely být nastaveny tak, aby se mohl rozvinout život. Za tímto výkladem antropického principu, označovaným také za teologický, stojí působení jakési všemu nadřazené vůle „Boha-stvořitele“, jehož cílem bylo od počátku stvoření života. Protože přírodovědci nemají dosud žádné vysvětlení, velice spekulativně uvažují s pouhou náhodou. Kvantový fyzik Lee Smolin ale vypočetl, že pravděpodobnost náhodného nastavení přesných parametrů určujících náš vesmír činí 10-229 . Podle Rogera Pentose, fyzika z Oxfordské university, je sada konstant, na nichž je založen náš vesmír, pouze jednou z 101200 možných kombinací. Jinými slovy – zdá se být téměř vyloučeno, že náš vesmír vznikl náhodně. Nebo-li – je téměř jisté, že za vznik vesmíru je odpovědná neznámá inteligence.